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Abstract. Circular coinduction is a technique for behavioral reasoning
that extends cobasis coinduction to specificarions with cirenlarities. Be-
cause behavioral satisfaction is not recursively enumerable, no algorithin
can work for every behavioral statement. However. algorithms using cir-
cular coindnction can prove every practical behavioral result that we
know. This paper proves the correctness of circular coinduction and some

[t P“.\(‘(lll("n(‘l"\'.

1 Introduction

Software and hardware systems are growing in complexity, with ever greater
possibilities for subtle errors: these can produce significant loss. inclinling human
life. Unfortunately, building complex reliable syvstems is very difficult. due to
incompleteness and rapid evolution of requirements. and to difficulties in writing
and understanding specifications. One approach is throngh formal methods. with
its two best known branches being model checking and theorem proving: these
can reveal inconsistencies. ambiguities and exceptions that conld be expensive
or impossible to detect orherwise.

This paper is part of our effort to design, implement, evaluate and popularize
formal method tools for behavioral specification and verification. Our Tatami
system [15.12,11] and its BOBJ component!. a behavioral specification and
verification language of the OB.J family, use hidden algebra [9,17]. Although our
work is mainly on theorem proving. our results also have implications for model
checking: in particular, only one state in a behavioral equivalence class needs to
be stored. and instead of hashing all visited states, a behavioral model checker
can just check whether a new state is equivalent to one already stored: this is
actually how our CCRW [14] (circular coinductive rewriting) algorithm works in
its BOBJ implementation.

' BOBJ comes from “Behavioral OBJ,” where “OBJ” [20] names a family of algebraic

programming and specification languages based on parameterized programming and
order sorted term rewriting and algebra, possibly enriched with other logics.



Some results in this paper were sketched in (28] and iplomented by Kai
Lincin BOBJ UL B3 but this paper gives the st correctness proof for civei-
lar coinduction. and for some of its conseqences. XMthongh onr examples nse
BOBJ. we do not present BOBS i detail, bt only the features needed for
these examples. The farest information on hidden algebra. inchiding the most
recent papers.links to relared work and ondine tutorial material, can he fonnd at

wwu.cs.ucsd.edu/users/goguen/projs/halg. heml. the hidden adgebra homepage.

2 Hidden Logic

Today's software systems often follow the ~object paradigm.” which may be

deseribed as having:

L. objects with local state and operations that modify or observe them. called
methods and attributes. respectively:
2. clusses that classify objects through an inherttance hierarchy: and

concurrent distributred execution.

Hidden algebra formalizes the object paradigm. but also inchules ordinary pro-
grams and components. Our behavioral approach is motivared by the fact that
cleverly designed systems often fail ro satisfy their requirements strictly, but in-
stead only satisfy them beharioraily. in the sense of appearing to sarisfv them
under all possible experiments.

Hidden algebra was introduced [9] to give algebraic semantics for the object
paridigm. and developed further in [10.16. 4. 17] among other places. One dis-
tinctive feature is a splir of sorts into risihle and hidden. where visible sorts are
for dara and hidden sorts are for objects. A model. or hidden algehra. is an ab-
straction of an implementation. consisting of the possible states. with concrete
functions for the attributes and methods, from states to data and to states.
respectively (hence. an attribute “observes™ states by returning a visible valie.
while a merhod modities states): ie.. a hidden algebra is an algebra that includes
a data universe.

Hidden logic is the generic name for various logics closely related to hidden
algebra, giving sound rules for behavioral reasoning that are easily automated.
Following [5], we distinguish two classes of hidden logics. depending on whether
the data universe, of “built-ins.” is assumed fixed or not. The first versions of
hidden logic took the fixed data approach. but we recently noticed that all our
inference rules are sonnd for the larger class of models which need not protect
data. Since there are also lovse data versions of hidden logic. such as coherent
hidden algebra [7.8] and observational logic {1.2.21], we decided not to restrict
onr exposition to the fixed data case. Nevertheless, the fixed data hidden logics
are often desirable, since real applications use standard booleans and integers
rather than arbitrary models: for example, the alternating bit protocol cannot
be proved correct unless implementations which do not distinguish 0 from 1 are
forbidden.



Aberadled presentation of vacions hidden togies appears in [26] together with
relations to many other coneepts, ahistory of hidden algebea with cititions.
aned proots for sonee resnldts mentioned bt not proved here. Wi now introduce
sotue of the most basie concepts assnming Guniliavity with ordinary many sorted

algebra

Definition 1. Giren disjprnt sets VoH called visible and hidden sorts. «
loose data hidden (17 /)-signature s « many sorted (VU Hi-sumature,
A fixed data hidden (V7 /f -signature i w paor (5.0 where & is o loose
duata hodden (VO H -signature and D, called the data algebra. is a many sorted
I -alyebra. A loose data hidden subsignature of ¥ s « loose dutu hidden
Vo H-signature [owith T C T and ITy= YTy, A fixed data hidden subsig-
nature of (L. D} is u fired duta hidden (V, H)-signature (. D) over the same
datu with I' C T and [[y= 1. The operations in £ with one hidden argu-
ment and visible resudt are colled attributes. those with one hidden aryument
and hedden vesult are called methods. those with two hidden arguments and
fudden resudt are ealled binary methods. and those with only {zero or more)

visthle wrguments and hidden result are culled hidden constants.

Hereafrer we may write ~hidden signature™ instead of “loose dara hidden (V. H)-
signature” or “tixed data hidden 117 Fi-signature.” since we don't need to dis-

ringuish them: alko we often write T for (. D1,

Definition 2. 1 loose data hidden Y-algebra 4 is a S-ulyrbra. and a fixed
data hidden (Y. Dj-algebra A is 0 S-algebra A such that 47 = D.

Again. we often write just “hidden algebra.”™ A hidden algebra can be regarded
as a “blackbox.” rhe inside of which is not seen. since one is only concerned with
its behavior under experiments. Notice that fixed dara hidden algebras protect
their dara: for example. such an implementation of a stack of natural numbers
does not corrupt its builtin natural nnmbers.

We next formalize the notion of “experiment.” which informally is an obser-
vation of an attribute of a svstem after it has been perturbed by some methods,
using the mathematical concept of context: the symbol e helow is a placeholder
for the srate being experimented upon.

Definition 3. Given a hidden subsignature I' of . an (appropriate) [-context
for sort s is a term in Tr({e: s} U Z) having eractly one occurrence of a spe-
cial variable® o of sort s, where Z is an infinite set of special variables. Let
Crle : 5] denote the set of all [-contexts for sort s. and var(c) the finite set of
variubles in a contert ¢ ercept o 4 [-contert with visible result sort is called
a [-experiment: let e : 5] denote the set of all [-experiments for sort s.
When the sort of experiments is important. we use the notation Cr ,[e : 5] for the
[-conterts of sort 8" for sort s. while £ o : s} denotes all the [-erperiments
of sort v for sort 5. If ¢ € Cry[o : s] and t € Tc (X)), then c[t] denotes the
term in I's o{var(c) U X) obtained from c by substituting t for e; formally,

» . . . . . . . .
* Special variables are assumed different from any other variables in a given situation.



cl = e = ey e te =t Tetearter U {e s sbo = Dfearter o X s

the wpwpue crtenswon of He map (o — tio variey e st = Totrarle) U X))
whaeh s wdentity on car(ey amd takes o @ s o b, Eurthermore, o generates w map
A Ay = [ A0 o vach Sealgebra A defined by A (o)) = agled.
where ag s the wuique cotension of the map (devoted i) that takes o to a amld

cach : < carley to B0,

The interesting experiments are those of hidden sort, e those with 5 € H:
experiments of visible sort are allowed just to smooth the presentation.

We now define a distinetive fearure of hidden logic. behavioral equivalence.
[ntuitively. two states are behaviorally equivalent iff they cannot be distinguished
by any experiment that can be performed on the system.

Definition 4. Given a hidden T-algebra A and a hidden subsignature [ of .
the equivalence given by a =L o' iff A,(a)(8) = 4,(a')(8) for all [-erperiments
v and all maps #: var(~) — A is called [-behavioral equivalence on 4.
We may write = instead of E[L: when & and I can be inferred from contert.
and we write =c when ¥ = [ Given any equivalence ~ on A. an operution
ain X, s, is congruent for ~ iff A (. ..oa,) ~ A, (a). ... d),) whenever
a, ~ ) for i = 1..n. An operation o is [-behaviorally congruent for A iff
it s congruent for =5 We often write just “congruent” instead of “behariorally
congruent™ . 4 hidden [-congruence on A is an equiralence on A whieh is
the wlentity on rvisible sorts and for which cach operation i I is congruent.

The following is the basis for several results below. generalizing a resulr in [17]
to operations that have more than one hidden argument or are not behavioral;
see [27.26] for a proof. Since final algebras do not necessarily exist in this setting.

existence of a largest hidden [-congruence does not depend on them. as ir does
in coalgebra [29,23.22]

Theorem 1. Guven a hidden subsignature I of ¥ and a hidden T -algebra A.
then ["-behavioral equivalence is the largest hidden I'-congruence on A.

Definition 5. A hidden Y-ulgebra 4 '-behaviorally satisfies a T-eguation
(YX)Vt =+t say e, iff 8(t) =L 0(t') for each §: X — A: in this case we write
A Eg e. If E is a set of Y-equations, we write 4 Eg E if A I'-behaviorally
satisfies each X-equation in E.

When ¥ and I' are clear from context, we may write = and [ instead of
=L and E_r‘: respectively. Also, to simplify the presentation. we only consider
unconditional equations here, but the theory also allows conditional equations
[17.18,26].

Definition 6. 4 behavioral (or hidden) T-specification (or -theory) is

a triple (£, E) where T is a hidden signature, [ is a hidden subsignature
of L. and E is a set of ¥-equations. The operations in [ — S [\ are called

3 A similar notion was given by Padawitz in [24].



behavioeal. Wo usundly let BB B, ete. denote behuwewrad specifications. A

hedddvnr £ -udyrbrn L behaviorally satisfies (or is a model of) a beharioral

specification Bo= (VOUEy off A EI\_ E. and in tHhus cose we write A B:owe
-

write B o of A E B anplies A E’L e. An operation o € L is behaviorally
congruent for I Jf o ts behaviorally congruent for every 1E B.

The following gives the existence of many congrient oprrations:

Proposition 1. If 5 = (S E0 s a behamiorad specification. then all opern-
tions in [oand all hedden constants, are beliwmioradly congruent for I3

Of course, depending on E. other operations may also be congruent: in fact, our
experience is that all operations are congruent in many practical situations.

2.1 An Example

We illustrate our concepts an example with infinite streams. These are common
in the formal specification and verification of protocols, where theyv serve as

inpurs and outputs.

bth STREAM is sort Stream
protecting NAT
op head : Stream -> Nat
op tail : Stream -> Stream .

op _&_ : Nat Stream -> Stream .

op odd : Stream -> Stream .

op even : Stream -> Stream .

op zip : Stream Stream -> Stream .

var N : Nat . vars S S’ : Stream .

eq head(N & S) = N . xxx ]
eq tail(N &£ S) =S . xxx 2
eq head(odd(S)) = head(S) . xxx 3
eq tail(odd(S)) = even(tail(S)) . *xx 4
eq head(even(S)) = head(tail(S)) . *xx 5
eq tail(even(S)) = even(tail(tail(S))) . =** 6
eq head(zip(S,S’)) = head(S) . x 7
eq tail(zip(S5,5’)) = zip(S’,tail(S)) . *x» 8

end

As usual. head. tail and _&_ give the first element, the elements after the first,
and place an element at the front of a streamn, respectively. while odd and even
give the streams of elements in the odd and even positions, respectively, and zip
interleaves two streams.

A behavioral theory is declared in BOBJ via the keywordsbth ... end, with
the signature and the equations in between. All sorts declared in a behavioral
theory are considered hidden; the visible sorts (here Nat) are imported from



sotne visthle tdatag spectfication there NAT). \lso operations are behavioral by
defanle: ancoperation not intended to be belavioral {which is rather sue in
practice) s given the attribute acong. The models of a behavioral theory are
the hidden algebras that behavioralv satisfy all its equations. In onr case. the
standard model is that of intinite lists of natural numbers. with head and tail
asexpected (the tail of ancinfinire list is infinite), and for example. odd (1 2 3 4
56789 ...)i513579 ....even(1 23456789 ...)ix246
8 ....amlzip(1 3579 ...,2468 ...)ix123456789
However. there may also be non-standard models: for example. the model with
exactlv one element in ecach carrier is valid for any loose data hidden theory.

[n rhis exauple, I contains al the operations, because all of them are behav-
iora) by default. Therefore. head (o). tail(e). head(tail(zip(odd(e), :))).
are all [-contexts. If 4 is the srandard infinite list model. then two lists are
behaviorally equivalent iff they have the same elements in the same order. How-
ever. there are models where a stream is an infinite tree. or some other infinite
structure. and elements can be behaviorally equivalent but not equal.

Oue can show that head and tail suffice as behavioral operations. since
together they can observe all behaviors of states, and thus define the behavioral
equivalence. There are at least two approaches to behavioral operations: one
says that " should contain as few operations as possible. and the other says it
courain as many as possible. We advoeate the second approach. since it is natural
i to select varions subsets. called cobases. that support simple coinduction
proofs. Moreover. any operation that is consistent with the intended behavior
of a specification. i.e. that preserves the hehavioral equivalence. can be added
to [ without changing the behavioral equivalence relation [26]. and there are
convenient congruence criteria to determine whether this is the case. as described
in Subsection 4.3.

3 Hidden Equational Deduction and Cobasis Coinduction

This section presents our latest version of behavioral deduction. excluding cireu-
lar coinduction. which is described in the next section. and “explicit coinduction”
[17]. where the user must provide an explicit relation, since this is difficult to au-
tomate. However, we do discuss cobasis coinduction (also called A-coinduction),
because the relation that it uses can be generated automatically from a cobasis".
We expect future work to yield further improvements in mechanizing coinduc-

tion.

3.1 Hidden Equational Deduction

Ordinary equational deduction is unsound for behavioral satisfaction, because
the congruence deduction rule is unsound for operations that are not behaviorally
congruent (e.g., for NDSTACK in [18]). The rules below modify the usual equational

! Cobases are introduced in the next section.



dediction to accannt for this. We tix acspecitication 8= (500 F ) ad Lot =gy

be detined on rerms by (1 (30 below,

(1) Reflexivity :  ————
t :[:"I t
to=Ep,

(2] Symmetry : %

=£y t

t =gy t.o =£y "
¢ EE’I t"

(3) Transitivity :

(W)t=teE 6:Y > Te(X). 6(t) =g, 6(t,)
fit) =g, 6(1')

(4) Substitution :

t = t.osortit 'y el

ol t) =gy gl ). for each # € Der( £)

(5) Congruence :
t EE'{ t. o sortit.tye H

by ———— e - -
IR =gy A1 for each congruent 3 €

If 7 is any derived operation over T having an argument of sort s. and if ¢ is
a L-rerm of sort s. then for simplicity we let #(117.¢) denote the term obtained

from o replacing its argument of sort s by + and using some distinet variables
I for the other arguments.

Unlike equational logics. the deduction systen above is not complete. In fact.
behavioral satisfaction is a fT9-hard problem [3]. so one cannot find an automatic
procedure to prove all true statements or disprove all false statements. For the
example in Subsection 2.1. one can relatively easily prove

head(zip(N & S, S’)) =gy head(N & zip(S’, S)).

tail(zip(N & S, S’)) =p, tail(N & zip(s’, 5)).

head(zip(odd(S), even(S’))) =g, head(S), and

head(tail((zip(odd(S), even(S’ )g)) =g, head(tail(s)),
head(tail'®((zip(odd(S), even(S5')))) =g, head(tail'®(s)),
and much more, but it is not possible to prove any of the following:

even(N & S) =£y odd(S).

zip(N & S, 8’) =g, N & zip(S’, S),

zip(odd(S), even(Sg) =gy S

odd(zip(S, S’)) =gq S

We will see that some of these can be proved by cobasis coinduction, while others
need circular coinduction.



3.2 Complete Sets of Observers

XNovomplete set of observers [3 s aoset of contexts that ean “generate” all exper-
tuents onesvstenn The following detinition s adapted from [3] to our notation

and rerminology:

Definition 7. Guen a hudden siynature .o complete set of observers for
U ois st of Ceconterts. say A, sueh that for vach T-vrperiment ~ = o] there
ts sotme Devontert 3 € N which is a subeontert' of .

This siws that every experiment = has the form +/[0] for some other “smaller”
experiment 5" and some 3 € A This notion already has a dual Havor to that of
basis for structural induction. where for each element ¢ of an abstract dara type.
there is some other element ¢’ and an operation 4 in the basis such that t = 4[¢t').
The following provides two easy examples:

Proposition 2. For any I". both I" and Er[e) ure complete sets of observers.

Consider the hidden subsignature I” of the signature of streams in the exam-
ple in Subsection 2.1 containing only the operations head and tail. Obviously.
Erle] consists of all the terms of the form head(tail(...(tail{e)))}. for an arbi-
rrary nher of occurrences of tail. Then it is easy to see thar

4, = |head(e:. tailiei} = [
A» = {head(e}. head(tail(e}).tail(tail(e:}}.
; = {head(e; head(tail(ei). headitail(tail(e))i.tailltail(tail(e}})}.

A =rfe].
are all complete sets of observers for [

To simplify writing we ambiguously let I' also denote the subset of -
contexts obtained directly. without compaesition. from the operations in I, such
as ) above.

As wirh induction. where some bases can be better than others for particular
proofs. it is possible that some different complete sets of observers are better for
different applications. For example. if one defines a stream blink by

eq head(blink) = 0 .
eq head(tail(blink))
eq tail(tail(blink))

1.
blink

then it is almost certain that the complete set of observers _\y above is better
than the others. {The stream blinkis 0 1 0 1 ....)

We do not further develop this topic here, here but refer to [3, 26]. However,
we would mention a disadvantage of complete sets of observers, that they do not
take into account the whole specification but only its signature. In particular,
in the example in Subsection 2.1 where " = ¥ contains all the operations, it is

pretty cumbersome to find an appropriate complete set of observers.

* That is, a subterm; notice that § necessarily contains the variable ¢ from v.



3.3 Strong Cobases

The complere formal detinition of a strong cobasis is quite technical and not
relevait to onr work, so we skip i Intuitively, astrong cobisis is a complete set
of observers that takes into account the equations of & specification in showing
thit “for each C-experiment = there is some context 6 € A which is a sibeontext
of 57

[ the exaunple of streams with £ = X one can tediously prove by indnction
ot the strueture of contexts rhat any experiment is equal to an experiment
containing only head and tail operations. so all the complete sets of observers
Ao e 0 A for o= {head.tail} in the previous subsection really are
strong cobases for the original specification of streams. A less intuitive strong
cobasis for streams is {head. odd. even}. and one can also tediously show that
any experiment is equivalent to an experiment containing only head. odd and
even. [ntuitively. this is because the three operations can “ohserve™ any element
in a stream. For example. head (even(odd(odd(S)))) observes the fifth element
of S, while the experiment head(even(even(odd(even(odd(S)))))) ohserves

the 27th element:

S = ap as iy iy Uy dg U gty

0dd(S) =l odly Ay (g gy (g dps
even(odd(S)) =y Tl g Ay oy ot ()
odd(even(odd(S))) =y gy dyn das dgs Ay A5 sy

even(odd(even(odd(S)))) =y, as: a3 asy
even(even(odd(even(odd(S))))) ar sy
head(even(even(odd(even(odd(S))))))

il

It

({54

There are situations where the latter cobasis is better than the standard one:
see [26] for a detailed presentation of strong cobases. together with more elegant
proofs that the above are all strong cobases, and a proof that any complete set
of observers is a strong cobasis,

3.4 General Cobases
Our general notion of cobasis (see also [18.19,25]) is as follows:

Definition 8. If B’ = (X', I"", E') is a conservative ectension of B = (X, T, E)
and if A C I then A is a cobasis for B iff for all hidden sorted terms

tt' € Toa(X), of B'E (VW X) §(W,t) = 6(W.t") for all appropriate § € A
then BE (VX)) t=t¢.

The following is a key first step toward automation of coinduction; it was first
proved in [27]:

Theorem 2. Every strong cobasis is a cobasis.

To ease presentation, from now on suppose that A is a cobasis of 8 with
B' = (Der(T), I E) and A C Der(I'), where Der(X) denotes the set of all
X-derived operations.



3.5 A-Coinduction
Oneeavcobasis is available, coinduction can be applied automatically. Lot =Ly
be the relivion senerated” by rales (1) (50 in Subsection 3.1, plus

|

M

IR £y S for all appropriate &

(6} A-Coinduction: - ;
t =Ey !

The following is imediate from the detinition of cobasis:

Proposition 3. Sy G SEqa = =

Thus. to prove that terms ¢t.¢' are behaviorally equivalent. it suffices to show that
= ’ artice a1 - Ve NV N - . —_ A 1/ a’

t=gpa In particular. in our stream example. where 3 = {head(e). tail(e}}

15 a cobase. one can immediately prove by J-coinduction and equational reason-

ing that

zZip(NXS. S') =gy N&zip(s'.s),

by showing rhat head applied either term is N. and that tail applied to either
term is zip(S’, S). One can also prove even(N\S) EE'I-—‘ odd(S). and many

other similar behavioral properties.

4 Circular Coinduction

This section gives an inference rule for behavioral reasoning. called circular coin-
duetion. since it handles some examples with circularities (i.e.. infinite recur-
sionsi that could not be handled by previous rules here (or in [27.13.19.25]:
we may also call it circular A-coinduction or A -coinduction.

After exploring how to prove the congruence of operations in [27] (see also
[26] and Subsection 4.3 below). we became convinced that this does not dif-
fer essentially from proving other behavioral properties. except perhaps rhat it
is usually easier. Also certain “coinductive patterns™ that appeared in specify-
ing operations inspired a congruence criterion that could automatically decide
whether an operation is congruent [27, 26]; moreover. this criterion followed from
the J-coinduction rule and was strong enough for all proofs we knew at that
time. But the fact that the congruence of zip in Subsection 2.1 (in the con-
text in which only head and tail are declared behavioral) didn't follow by that
criterion, suggested that more powerful deduction rules were needed.

Bidoit and Hennicker [3] gave a general congruence criterion from which
the congruence of zip followed easily. Influenced by the relationship hetween
J-coinduction and the congruence criterion in [27], we sought a general infer-
ence rule from which the criterion in [3] would follow as naturally as our cri-
terion in [27] followed from J-coinduction, and which could prove behavioral
properties not provable by A-coinduction. The result of this search was circular
A-coinduction, as presented in this section and implemented in BOBJ [14].

& Serictly speaking, =gy should be replaced by =g in rules (1)-(3).



L1 Limitations of A-Coinduction

We hirsr give some examples where the six roles generating the relation 551/,_\
are not enongh to prove certain simple properties, which however ean be vasily
proved by cirenlar d-coinductjon.

Suppose one wants to prove that zip(odd(S), even(S)) = $ holds in the
hehavioral specification of Sibsection 2.1, Let us choose the standaed (strong)
cobasis 3 = {head(s). tail(e,;}. For Jd-coinduction. one has rto prove that
head(ziptodd(Si. even{Siii =F,a head(Si which follows by vquational de-
dnetion. and that tail(ziplodd(S;. eveniS)j) S=Ey tailtSi. which reduces to
zipleven(S).even(tail(S))} EEt/,_\ tail(S). By A-cuinduction. one similarly
generates two other subgoals. namely head(zip(even(S). even(tail(S)))) =Ega
head(tail(S)), which is easy. and tail(zip(even(S), even(tail(S}))) ZEqa
tail(tail(S)). which reduces to zip(even(tail(S)). even(tail(tail(S))}) S0
tail(tail(S)). Since the last subgoal is nothing but the previous (hidden) one
where S is replaced by tail(S). this procedure will loop forever. and thus does
not work. But circular coinduction will detect this circularity and terminate,
tleclaring the initial goal proved. Before we discovered and implemented circular
coinduction. BOBJ either froze or reported a “segmentation fault™ when asked to
anromatically prove siuch properties. We enconrage the interested reader rry to
prove odd(zip(S. 8"} =F4a S with basis coinduction. aud to discover another

seewtingly hopeless cirenlarity there.

4.2  Circular A-Coinduction

Let 5 = (X. I E} be a fixed hehavioral specification for this subsection. To
ease the presentation. suppose that A is a complete set of observers, Technically
speaking. A can be a strict cobasis but the proofs are slightly more complicated;
although we haven’t yet proved the correctness of circular coinduction for general
cobases. this doesn’t seem to have any practical relevance. since all the concrete
cobases we know are either complete sets of observers or are strong cobases. We
consider all equations to be quantified by exactly the variables that occur in
their two terms, and omit them whenever possible; we also write t = ¢’ instead
of BE (VY)t="t.

Definition 9. Substitutions 8,6': X — Tr(Y) are behaviorally equivalent,
written 6 = ¢', iff 6(r) = 6'(x) for every r € X. Terms t and t' are strongly

behaviorally equivalent. written t = t'. iff for any B-algebra 4 and any
L X = A with n(r) Eg ra{r) for euch £ € X, r/{¢t) Ef\- T2 (t').

Notice that = is symmetric and transitive but may not be reflexive, since, for
example, terms of the form o(z|,.... r,) are not strongly equivalent to any term
if o is not congruent (see also 5 of Proposition 4).

Proposition 4. The following hold:



~
i

"unplies 1= ¥
2ob bt = uowhenever wois a C-term -
" - = (1T for all appropriate [ -coperiments =

I

b=t undb = vnply Bit) = 8 (1)
oo congruent off s L r,) SEale o,
Proof 1. Thix is straightforward since one can take = = 7 in Detinition 9.

2064 = uthen t = u by 1. Now suppose that + = and let 7.7y be like in

Detinition 9. Since w contains only congruent operations. then one can easily
show M structural unlmtlon that r(n) —[r‘ ma(u). On the other hand. since

rit) = —: Ti(w) and i) _.\- - m(u). it follows that ¢ = .

3. Suppose that ¢ = ¢, that v is a I'-experiment and that 7.7 : vur(t t'yu
var{~1 = 4 are maps as in Deﬁnmon 9. It is immediate that 7,(#) _‘- raft').
Since ~ contains only congruent operations. it can be easily seen that r(5[t]) =
A itiirg = AL (")) = AL () () = mals y[t']}. Conversely. suppose
thar ~{t] = ~[¢'] for all appropriate -experiments . and let 7.7 : var(t.t')
A be two maps as in Definition 9. [t suffices to show that for any [-experiment =,

]

Ao = A tmit i as functions in [lear(+) = A — A]. Notice that giving
a funcrion in {rar(~i — 4] llllp[lt‘\ extending n.r to functions car(t ¢y U
cart~ — A i which case. Ay (r (1) = 1 (2 [t]) = A (0 () = o [t

4. thix follows by noticing that for any 7.7 Y = A with i (y) Ef— _,(y). and
anv A 8 X — TriY ) with8 = #. it is the ¢ case that the maps #: 7.0 70 X\ —
1 also satisfy the property that (8: (L) E‘ (#": () for each r € .\.

3. o is congruent iff 4,(ny. ... ap) = Aglay.....a)) for any ap.af. ... a,. aj, with
ap S dyoa, = al, i T(o(r. . r)) = mlalr. cdp)) for Ti(r,) = a, and
ey = forall l <i < niffole. ... r,) = T e B

For the rest of the section. we assume some well-founded partial order < on
[-contexts which is preserved by the operations in I'. For example. one such
order is the depth of contexts.

Definition 10. Terms t and t' are A -comductlvely equivalent iff for each
appmpmxte 3 € A, either 5(W.t) = 6(W.t') = u for some [-term u, or (1) =
(clt]) and 60V, t') = @' (c[t']) for some 8 = ' and ¢ < 6.

Theorem 3. Ift and t' are A’ -coinductively equivalent then t = ¢'.

Proof. We first sho“ by well-founded induction that for every appropnate ex-

periment v. y[t] = ‘y[ ’]. Let v be any experiment and assume that [t] = 4/[t']
for all experiments ¥’ < ~. Since A is a complete set of observers, there is some

" We write “[-terms” for simplicity, but the result holds for all terms built with
congruent operations.



experiment 57 suehthat 5 = <7[0] for some o € A0 I there is some {-termn
stuch that oW fy = (10 V) = i then “fl =[] = e and S s oa U-ternn,
~o by 2 of Proposition 4. <[1] 2 <[] Ou the other hand. if 5(187.¢) = H(e[t]) and
S = H]) for some 8 = # and ¢ < 5, then sinee the variables appearing
inconrexts are assumed to he always ditferent from the other variables, one gots
that <[t] = A <Ml ] and - (= #~"eDL and so by the indnetion hypothests
for =" = ="[c} < 4"[6] = ~ and 4 of Proposition 4. ~[t] = ~[#]. The rest follows

by 3 of Proposition -4

Therefore we can add a new inference rule. Since in most cases 8 = 8. we et
be the relation generated® by the rules (1)-(6; in Subsections 3.1 and

=Eya
3.5 and the following:

o - o,
(B(1. ¢ =Ega u =Eya SIE
where u© is some [-term) or
- EE AT N LY} — v
(oI 8 Skga B(eft]r and (W) =Eya Aeft'])
for some ¢ < 3} for all appropriate § £ A
- "

(7) A "-Coinduction : -
! :Ei[._\
In order to prove that + = ', one can prove now that ¢ Eéq._x t'. For
example. to prove that zip(odd(S), even(S)) = S. the property that sent
J-coinduction into an infinite loop in Subsection 4.1. one can first prove that
zip(even(S), even(tail(S))) EE-V[.__\ tail(S) by {head,tail} -coinduction
(if 4 is head then we are in the first case of (7) and if § is tail then we are in
the second case of (7) with ¢ = e and #(S) = tail(S)i. and rthen to prove hy
{head,tail}-coinduction the original behavioural equality as in Suhsection 4.1.
We suggest the reader prove that odd(zip(§,8')) = S also by {head,tail} -
coinduction and then prove both statements by {head,odd,even}-coinduction.
BOB.J implements circular coinductive rewriting [14.13]. an algorithm that
combines the coinduction inference rules presented in this paper with behavioral
rewriting, an adaptation of term rewriting to our behavioral equational deduc-
tion system; this can automatically prove all the reasonable statements that we
know, including all those mentioned in this paper, and all those that we tried
from examples previously done by CoClam [6] using complex heuristics, but of
course new inference rules may be needed for more exotic examples.

4.3 Congruence Criteria

The simplest way to find a cobasis for a behavioral specification is to guess
one and then to show that all the other operations are behaviorally congruent
¥ Strictly speaking, =gy in rules (1)-(5) and =E4a is rule (6) should be replaced

=2
by TEq.a



for o specitication having the same equations and operations s the original
speciication bt only the gnessed operations declared as hehavioral (see (s
26] for more detail s Sinee one of onr major soals is to automare the process of
behawvioral deduetion in BOBJ. the problem of automatic detection of cobases
plays a crucial vole. BOBJ iniplements o henristic thin works well in practical
situations, and is based on the following eriteria, which follow from Theorens
3. The hrst congruence eriterion. which we will ¢all the BH criterion. is the

essence of that in [3):

Corollary 1. Guvn w complete set A af vbservers und some 7 € 5 such
that for each 6 € A either S[otry or,i] = w0 for some [-term u. or else
Satey .orn)] = clatt.t,)] for some L-terms b t, and ¢ < 6. then o is

congruent.

Proof. Theorem 3 with t = ' = o(r|.....r,) and 8 = § with 8(r,) = t; for
all L < < n.gives olry....r,) = o(ay.....ry). Then 5 of Proposition 4 gives

congrience of o

The following simpler but common congruence criterion. which we here call
the RG criterion. was presented in [27] together with the suggestion that it
could be easily implemented in a system like CafeOBJ:

Corollary 2. Guren an operation o € T such that for eachd € I if the equation
dea(ry. o, W= for some TC-term w 1s in E. then o is congrient,

Proof. This is the special case of the BH eriterion where A = I and there is no
circularity (i.e.. recurrence) in the definition of o.
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